(4x^2+19x+7)/x+4

Simple and best practice solution for (4x^2+19x+7)/x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2+19x+7)/x+4 equation:


D( x )

x = 0

x = 0

x = 0

x in (-oo:0) U (0:+oo)

(4*x^2+19*x+7)/x+4 = 0

(4*x^2+19*x+7)/x+(4*x)/x = 0

4*x^2+19*x+4*x+7 = 0

4*x^2+23*x+7 = 0

4*x^2+23*x+7 = 0

4*x^2+23*x+7 = 0

DELTA = 23^2-(4*4*7)

DELTA = 417

DELTA > 0

x = (417^(1/2)-23)/(2*4) or x = (-417^(1/2)-23)/(2*4)

x = (417^(1/2)-23)/8 or x = (-(417^(1/2)+23))/8

(x+(417^(1/2)+23)/8)*(x-((417^(1/2)-23)/8)) = 0

((x+(417^(1/2)+23)/8)*(x-((417^(1/2)-23)/8)))/x = 0

((x+(417^(1/2)+23)/8)*(x-((417^(1/2)-23)/8)))/x = 0 // * x

(x+(417^(1/2)+23)/8)*(x-((417^(1/2)-23)/8)) = 0

( x+(417^(1/2)+23)/8 )

x+(417^(1/2)+23)/8 = 0 // - (417^(1/2)+23)/8

x = -((417^(1/2)+23)/8)

( x-((417^(1/2)-23)/8) )

x-((417^(1/2)-23)/8) = 0 // + (417^(1/2)-23)/8

x = (417^(1/2)-23)/8

x in { -((417^(1/2)+23)/8), (417^(1/2)-23)/8 }

See similar equations:

| 4(x-2)+17=3(x+5) | | 5y^2=13y+6 | | x/2-6=-2 | | 0.216y^5-2y^3=0 | | 9/16*7/10 | | 44x+17=83 | | 5x-3y^2=0 | | (-4/9)*(-9/7) | | (x+9y)7x^7= | | -11n+16=-10n-14 | | (-8)*7/4 | | 5y-9=2y+3 | | x^2+2x^2=45 | | -1/9*5/4 | | 30*5/6^2*1/5^2 | | -14x-24=60 | | 34x^2+6x-7=0 | | 2(-1)-y=4 | | c^2=15 | | 3(x-4)-2=2(2x+5)-x | | -7/8-1/4 | | 2(1)-y=4 | | (3-6x)/(x^3+5x^2-6x)=0 | | -3/7+1/2 | | 10(4-k)+2=-2(k-3)-7 | | 1/5-3/4 | | 4=-4x+3 | | 19x-17=17x-14 | | -2=-4x+3 | | U/4=5/11 | | 6/y=13/8 | | 7/8=4/y |

Equations solver categories